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The solution of the Navier-Stokes equation 

in the case of flow in a driven cavity and between 

parallel plates is developed within this paper. To 

solve the Navier-Stokes equation the SIMPLE 

algorithm is employed.  

I. Introduction 

Two sets of geometry with similar boundary 

conditions are given in the problem statement.  

 

Figure1 . Driven cavity. 

 

Figure 2. Flow between parallel plates.  

 A correct solution to the driven cavity 

problem will show vortical flow within the square 

cavity. Typical parabolic u-velocity distribution will 

be seen in a correct solution of the parallel plate flow 

geometry.  

Both geometries assume constant property 

flow,       and     .  

 

 

II. SIMPLE Algorithm 

The SIMPLE algorithm or semi-implicit 

method for pressure-linked equations is a routine 

used to solve the pressure linked nonlinear 

momentum equations. In the case of incompressible 

fluids, a correct pressure field applied to the 

momentum equations should satisfy equilibrium.  

Implementation is a process of guess-and-

check. Steps are listed below.  

1. Compute uncorrected (does not satisfy 

continuity) mass flux at the face of each 

velocity control volume.  

2. Compute an intermediate velocity field 

via solving the discretized momentum 

equation. 

3. Solve the pressure correction equation 

for each control volume. 

4. Update pressure field. 

5. Correct cell velocities to satisfy 

continuity via the gradient of the 

pressure correction.  

6. Correct any other scalar variables. 

7. Return to step 1 until convergence.  

A more thorough, albeit brief, explanation of 

the algorithm can be seen in the following sections.  

III. Discretization  

 

A. Staggered Grid 

Grid staggering is the process of purposefully 

misaligning the pressure & velocity control volumes 

in order to prevent a non-physical “checker board” 

pressure distribution. This project employs back 

staggering notation, seen in figure 3.  

The main difficulty in writing the code for this 

project was to eliminate typos created by the 

sometimes confusing notation required for grid 

staggering.  

 



 

Figure 3. The misaligned pressure, u-momentum & 

v-momentum control volumes.  

B. Momentum Terms 

When the velocity field is not known or given, a 

solution to the momentum transport equations must 

be found. The three governing equations of steady 

laminar flow are given as: 
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(3.3) 

Difficulty in solving these equations lies in 

handling the nonlinear terms present in the first two 

equations, as well as the treatment of the       terms 

present in all three equations. The reader is assumed 

to be familiar with the SIMPLE algorithm as the 

following derivation is meant to give a brief 

overview of the process and implementation. For a 

rigorous derivation see chapter 6 of Introduction to 

Computational Fluid Dynamics, Versteeg & 

Malalasekera, 2
nd

 edition.  

 

Figure 4. A collection of 5 u-momentum control 

volumes demonstrating the notation used in this 

derivation.  

The discretization process will be developed for 

u-momentum equation (3.1). A similar process can be 

done for v-momentum equation (3.2). The left hand 

side is integrated over a u control volume in figure 4 

and the right hand side diffusion and pressure terms 

are discretized.  

Source terms in (3.1) are dropped for constant 

property flows. Equation 3.1 can be rewritten as: 

                       

            
     

     

  

  
     

     

    
     

     

  

  
     

     

   

(3.5)   

To facilitate an under relaxation scheme to find 

an iterative solution to the u-momentum equation 

(which do not yet satisfy continuity) the    terms are 

grouped together, and the convective flux terms are 

combined with diffusive conductance terms into “A” 

terms.        represents application of upwind 

differencing to the convective terms.  
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 (3.5b) 
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      (3.5e) 

 

                    (3.6a) 

                      (3.6b) 

                    (3.6c) 

                     (3.6d) 

Mass flow terms (3.5) across the control volume 

face are interpolated from control volume center 

values, for example: 

   
     

 
 

           

 
 

Finally, a SOR type iteration scheme can be used 

and the final u-velocity term can be solved for and 

iterated on.  
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C. Pressure Terms 

Since there is no transport equation similar to the 

u or v momentum equations for pressure, return to the 

integrated continuity equation and assume       

terms are made up of a guessed and corrected value.  

                                  

 (3.7) 

        
             

    (3.8a) 

        
             

   (3.8b) 

        
             

    (3.8c) 

From here the     correction values can be 

seen to be in terms of pressure correction values. A 

key approximation made by the SIMPLE algorithm 

when finding correction values at the center of a 

control volume is the omission of surrounding node 

correction values.  
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    (3.9c) 

  
  

  

  
    

    
    (3.9d) 

To create notation which is clearer,   “a” 

values are created.  

   
    

  
    (3.10a) 
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    (3.10d) 

                 (3.11) 

 The correction equations (3.8) and the      

correction values (3.9) can be plugged back into the 

integrated continuity equation (3.7) and the “a” 

values (3.10) can be factored out. Solve for   
  via 

SOR scheme and the resulting pressure correction is: 

  
    

  
  

  
     

      
      

      
    

    
           (3.12) 

       

                              (3.13) 

Following the steps laid out in section II, 

  
  should be solved after the non corrected 

momentum equations (3.6) are solved. Once   
 has 

been reasonably converged, apply the corrections 

(3.8) and (3.9) to the velocity and pressure terms. 

Correction of the pressure term (3.8c) should be 

under relaxed.  

The source term, S (3.13) is crucial for 

determining when the solution is converged. Once 

the source term calculated before the velocity 

corrections is reasonably close to zero, it can be 

assumed that the problem has converged and satisfies 

continuity over the whole mesh.  

 



IV. Boundary Conditions 

 

A. Driven Cavity 

It is known that the u and v velocities will always 

be zero on the three wall boundaries present in the 

driven cavity, therefore it is necessary to only iterate 

on the interior nodes. Care must be taken to select the 

correct interior nodes as it depends on the staggering 

scheme used.  

The combined diffusion and convection terms in 

(3.5) must be scaled along wall nodes because the    

or    must be divided by two when solving the v & u 

momentum equations, respectively.  

The u = 1 boundary is simple to incorporate by 

initializing the top row of the u matrix to 1.  

In both problems, the   and   values are set to 

zero on east and west faces and the   and   values 

are set to zero on north and south faces.  

 

B. Channel Flow 

 

The u=1 inflow condition is easy to implement 

by initializing the left side of the u-momentum 

matrix. The 
  

  
 boundary requires a more 

consideration if continuity is to be satisfied. The 

following steps will enable this boundary condition 

and cause it to satisfy continuity (based on the grid 

notation used in project 4 code).  

                       

     
                           

 
 

       
                         

 
 

           
    
      

          

The scaling of the diffusion and convection 

terms (3.5) along walls are the same in the channel 

flow problem as in the driven cavity problem.  

V. Solution 

A. Convergence Criteria 

Convergence is determined by monitoring the 

source value, S. Once the source term is below 1e-10 

before velocity corrections are made, the iterative 

loop will exit. In other words:  

                                         

B. Flux calculation 

 

Flux calculations along the top surface of the 

driven cavity problem are made using a second order 

accurate central difference scheme. See p. 278 of 

Versteeg for more details.  

         
          

 
 

  

   

   

 

 

VI. Results 

A. Driven Cavity 

The following diagrams are comparisons 

between FLUENT generated contour plots of u-

momentum and Matlab generated u-momentum plots. 

See appendix A for more contour plots and 

momentum vector plots.  

Figure 5. FLUENT contour plot of u-momentum on a 

200x200 mesh.  

 

 

 

 



Figure 6. Matlab generated plot of u-momentum on a 

150x150 mesh.  

Both plots are practically identical. The 

vortex has the same general shape and position in 

both charts. The Matlab plot uses more contours and 

has a coarser grid, which could be the reason for the 

slight discrepancies between the two.  

 

 

 

 

 

 

 

 

Figure 7. A comparison of the center line u-velocity 

computed with Matlab and FLUENT.  

 On a 51x51 grid the centerline of both 

solution methods lay on top of each other – further 

proof of a correct implementation of the SIMPLE 

algorithm as applied to a driven cavity.  

Mesh size: 50 100 150 

FLUENT drag: 0.188 0.215 0.233 

Matlab drag: 0.1763 0.198 0.22 
 

 Drag forces computed on variable mesh 

sizes can be seen above. The Matlab computed 

drag forces are slightly lower than FLUENT 

calculations, which is to be expected based off 

discussions held in class.  

 

B. Channel Flow 

Below are contour plots for channel flow 

calculated in Matlab and in FLUENT. The cross 

section of the u-velocity in an ideal channel flow 

solution will have the expected laminar parabolic 

shape with the maximum velocity being 1.5*u-

wall.  

Figure 8. FLUENT generated plot on a fine grid.  

Figure 9. Matlab generated plot of the channel flow 

problem.  

Both channel flow contour plots are nearly 

identical, leading to the assurance that the algorithm 

was implemented correctly and boundary conditions 

were applied correctly.  
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 Figure10 . A comparison of velocity curves. 

Maximum for FLUENT = 1.498, maximum for 

Matlab = 1.4989 

 The velocity profile of the Matlab generated 

plot lays on the top of the FLUENT profile, further 

proof of a correct implementation. Both were 

generated on odd grid spacing to ensure the absolute 

highest velocity was recorded.  

VII. Summary 

Overall, my results seem to fit very well 

with the accepted values of FLUENT. In both cases, 

the Matlab results fit the contour plots as well as the 

line plots of FLUENT results. This is an indication 

that my code was properly written and implements 

the SIMPLE algorithm correctly. For more contour 

plots, see Appendix A.  
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Appendix A  

Figure A1. FLUENT results of v-momentum on 

a 200x200 grid 

Figure A2. Matlab results of v-momentum on a 

150x150 grid 

  



Figure A3. FLUENT velocity vector on a 50x50 

Figure A4. Matlab velocity vector results on a 

50x50 driven cavity.  

  



Figure A5. FLUENT velocity vector results on a 

channel geometry 

 

Figure A6. Matlab velocity vector results on a 

channel geometry 


